Monday, 10 November 2014

sequences and series - Why does $sum_{k=1}^infty (ζ[2k+1]-1)=frac{1}{4}$




Can someone explain why



$$\sum_{k=1}^\infty (ζ[2k+1]-1)=\frac{1}{4}?$$


Answer



We can rearrange
$$ \begin{align}\sum_{k=1}^\infty(\zeta(2k+1)-1)&=\sum_{k=1}^\infty\sum_{n=2}^\infty\frac1{n^{2k+1}}\\
&=\sum_{n=2}^\infty\sum_{k=1}^\infty\frac1{n^{2k+1}}\\
&=\sum_{n=2}^\infty\frac1{n(n^2-1)}\\
&=\sum_{n=2}^\infty\left(\frac1{2n(n-1)}-\frac1{2(n+1)n}\right)\\&=\frac14\end{align}$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...