Saturday, 8 November 2014

limits - Is $(-1)^{infty}$ an indeterminate form?

We know that $\lim_{n\to\infty}(-1)^n=(-1)^{\infty}$ doesn't exist. Now take $\lim_{n\to\infty}(-1)^{2n}=(-1)^{\infty}$. This limit exists, because $\lim_{n\to\infty}(-1)^{2n}=\lim_{n\to\infty}((-1)^2)^n=1$. Does this mean that $(-1)^{\infty}$ is an indeterminate form?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...