Can anyone show me the proof of why if $|x|<1$ then:
$$
\lim_{n \to \infty} 1+ x^2 + x^3 + \ldots + x^n = \frac{1}{1-x}
$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment