Saturday, 8 November 2014

Proof of the power series 1 + $x^2$ + $x^3$ + $ldots$ + $x^n$ = $frac{1}{1-x}$

Can anyone show me the proof of why if $|x|<1$ then:



$$
\lim_{n \to \infty} 1+ x^2 + x^3 + \ldots + x^n = \frac{1}{1-x}
$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...