How can I find the imaginary and real part of $z + e^z$ ?
I tried but I only get $$x + yi + e^x e^{yi}$$
Answer
HINT:
You are on the right track. Note that $e^{iy}=\cos(y)+i\sin(y)$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment