Friday, 30 January 2015

integers - how to proof that $1,9999.... in mathbb{Z}$?





I want to prove that $1,999\dots$ Is an element of $\mathbb{Z}$. Here is my try :



$x = 1,9999\dots \\
10x = 19,9999\dots \\
10x - x = 18 \\

9x = 18 \\
x = 18/9 \\
x = 2 $



So $x \in \mathbb{Z}$



I know something is wrong but where ?


Answer



$$x=1+9\sum_{i=1}^{+\infty}10^{-i} $$




$$=1+9\sum_{i=1}^{+\infty}(\frac {1}{10})^i$$



$$=1+9\frac {1}{10}\frac {1}{1-\frac {1}{10}}$$



$$=1+9\frac{1}{10}\frac {10}{9}=2$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...