Saturday, 24 January 2015

real analysis - $limlimits_{n to{+}infty}{sqrt[n]{n!}}$ is infinite




How do I prove that $ \displaystyle\lim_{n \to{+}\infty}{\sqrt[n]{n!}}$ is infinite?


Answer



By considering Taylor series, $\displaystyle e^x \geq \frac{x^n}{n!}$ for all $x\geq 0,$ and $n\in \mathbb{N}.$ In particular, for $x=n$ this yields $$ n! \geq \left( \frac{n}{e} \right)^n .$$



Thus $$\sqrt[n]{n!} \geq \frac{n}{e} \to \infty.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...