Saturday, 24 January 2015

real analysis - limlimitsnto+inftysqrt[n]n! is infinite




How do I prove that lim is infinite?


Answer



By considering Taylor series, \displaystyle e^x \geq \frac{x^n}{n!} for all x\geq 0, and n\in \mathbb{N}. In particular, for x=n this yields n! \geq \left( \frac{n}{e} \right)^n .



Thus \sqrt[n]{n!} \geq \frac{n}{e} \to \infty.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...