I know that $$\lim\limits_{ x\to + \infty}x\cdot \sin(\sqrt{x^{2}+3}-\sqrt{x^{2}+2})\\=\lim\limits_{ x\to + \infty}x\cdot \sin\left(\frac{1}{\sqrt{x^{2}+3}+\sqrt{x^{2}+2}}\right).$$ If $x \rightarrow + \infty$, then $\sin\left(\frac{1}{\sqrt{x^{2}+3}+\sqrt{x^{2}+2}}\right)\rightarrow \sin0 $. However I have also $x$ before $\sin x$ and I don't know how to calculate it.
Answer
Letting $h=\frac1x$:
$$\begin{array}{cl}
&\displaystyle \lim_{x \to \infty} x \sin \left( \sqrt{x^2+3} - \sqrt{x^2+2} \right) \\
=&\displaystyle \lim_{x \to \infty} x \sin \left( \frac 1 {\sqrt{x^2+3} + \sqrt{x^2+2} } \right) \\
=&\displaystyle \lim_{h \to 0^+} \frac1h \sin \left( \frac h {\sqrt{1+3h^2} + \sqrt{1+2h^2} } \right) \\
=&\displaystyle \lim_{h \to 0^+} \frac 1 {\sqrt{1+3h^2} + \sqrt{1+2h^2}} \frac {\sqrt{1+3h^2} + \sqrt{1+2h^2}} h \sin \left( \frac h {\sqrt{1+3h^2} + \sqrt{1+2h^2} } \right) \\
=&\displaystyle \frac12 \times \lim_{h \to 0^+} \frac {\sqrt{1+3h^2} + \sqrt{1+2h^2}} h \sin \left( \frac h {\sqrt{1+3h^2} + \sqrt{1+2h^2} } \right) \\
=&\displaystyle \frac12 \times 1 \\
=&\dfrac12
\end{array}$$
No comments:
Post a Comment