I know that limx→+∞x⋅sin(√x2+3−√x2+2)=limx→+∞x⋅sin(1√x2+3+√x2+2). If x→+∞, then sin(1√x2+3+√x2+2)→sin0. However I have also x before sinx and I don't know how to calculate it.
Answer
Letting h=1x:
limx→∞xsin(√x2+3−√x2+2)=limx→∞xsin(1√x2+3+√x2+2)=limh→0+1hsin(h√1+3h2+√1+2h2)=limh→0+1√1+3h2+√1+2h2√1+3h2+√1+2h2hsin(h√1+3h2+√1+2h2)=12×limh→0+√1+3h2+√1+2h2hsin(h√1+3h2+√1+2h2)=12×1=12
No comments:
Post a Comment