Friday, 15 May 2015

algebra precalculus - Negative Squared Root on Quadratic Equation formula?

I have this basic problem:




In a farm, $X$ animals are added to the farm. These animals gain weight according to the equation: $500 - 2X$ gr. Which interval of animals can the farm take, if the total weight gain is greater than $30,600$ Kg?




Original (Spanish - Español):




En un criadero de cuyes se integran $x$ cuyes, si se tiene presente que los cuyes ganan peso en promedio de $(500 - 2x)$ gramos. ¿Qué intervalo de cuyes puede aceptar esta granja si la ganancia total de peso de los cuyes es mayor a $30 600$ Kg?





Step 1:



Total animals: $x$.



Weigthgain = $(500 - 2x)$ gr.



TotalWeightgain > $30 600(1000)$ converting kg to gr.




Step 2:



$$x(500 - 2x) > 30600000$$



Step 3:



$$0 > 2x^2 - 500x + 30 600 000$$



Step 4:




$$ x = \frac{-(-500) +- \sqrt[2]{(-500)^2 - 4(2)(30 600 000)}}{2(2)}$$



But as you can see, the sqrt is negative. So It does not exist.
What should be the next step?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...