Let
$$f(x,y) =
\begin{cases}
xy \frac{x^2 - y^2}{x^2 + y^2} \text{ when } (x,y) \neq (0,0) \\[2ex]
0 \text{ when } (x,y)=(0,0)
\end{cases}$$
Compute $f_x(0,0)$, $f_y(0,0)$, $f_{xx}(0,0)$, $f_{xy}(0,0)$.
So, here's my problem: when I do compute $f_x$ I'm left with a function that is fraction made entirely of variables and no constants, so that $f_x$ is undefined.
What exactly am I supposed to do?
Answer
$$f_x(\mathbf{0})= \lim_{x \to 0}\left({\frac{f(x,0) - f(0,0)}{x - 0}}\right) = \lim_{x \to 0}\frac{\left({x0\dfrac{x^2 - 0^2}{x^2 + 0^2}}\right)- 0}{x-0}$$
and so on.
No comments:
Post a Comment