Monday, 18 May 2015

calculus - Compute $f_x(0,0)$ etc. for the following function $f(x,y))$



Let
$$f(x,y) =
\begin{cases}
xy \frac{x^2 - y^2}{x^2 + y^2} \text{ when } (x,y) \neq (0,0) \\[2ex]
0 \text{ when } (x,y)=(0,0)

\end{cases}$$



Compute $f_x(0,0)$, $f_y(0,0)$, $f_{xx}(0,0)$, $f_{xy}(0,0)$.



So, here's my problem: when I do compute $f_x$ I'm left with a function that is fraction made entirely of variables and no constants, so that $f_x$ is undefined.



What exactly am I supposed to do?


Answer



$$f_x(\mathbf{0})= \lim_{x \to 0}\left({\frac{f(x,0) - f(0,0)}{x - 0}}\right) = \lim_{x \to 0}\frac{\left({x0\dfrac{x^2 - 0^2}{x^2 + 0^2}}\right)- 0}{x-0}$$




and so on.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...