Thursday, 21 May 2015

calculus - A limit problem related to logsecx




If f(x)=3x0(1+sect)logsectdt(logsecx){x+log(secx+tanx)} then prove that lim and \lim_{x \to 0}\frac{f(x) - 1}{x^{4}} = \frac{1}{420}




Looking at the integral sign in numerator I see that the best way to attack this problem is via L'Hospital Rule. But that requires to show that the integral diverges to \infty as x \to {\pi/2}^{-}. Assuming that this is the case I solved the first limit by applying L'Hospital's rule twice. But for the second limit it seems hopeless to try L'Hospital because of denominator x^{4} which might require 4 times its application.




Looking at the functions involved it does not look easy to apply Taylor's series expansions. I am not sure if there is any elegant solution for the second problem. Please let me know any hints or a solution to the second limit.



Update: I tried some simplification along with LHR for the second limit but still the final solution is eluding.



Let a(x), b(x) be the numerator and denominator of f(x). Clearly we can see that
\begin{align} B &= \lim_{x \to 0}\frac{b(x)}{x^{3}}\notag\\ &= \lim_{x \to 0}\frac{\log\sec x\{x + \log(\sec x + \tan x)\}}{x^{3}}\notag\\ &= -\lim_{x \to 0}\frac{\log\cos x\{x + \log(1 + \sin x) - \log \cos x\}}{x^{3}}\notag\\ &= -\lim_{x \to 0}\frac{\log\cos x}{x^{2}}\cdot\frac{x + \log(1 + \sin x) - \log \cos x}{x}\notag\\ &= -\lim_{x \to 0}\frac{\log(1 + \cos x - 1)}{\cos x - 1}\cdot\frac{\cos x - 1}{x^{2}}\cdot\frac{x + \log(1 + \sin x) - \log \cos x}{x}\notag\\ &= \frac{1}{2}\lim_{x \to 0}\frac{x + \log(1 + \sin x) - \log \cos x}{x}\notag\\ &= \frac{1}{2}\lim_{x \to 0}\left(1 + \frac{\log(1 + \sin x)}{\sin x}\cdot\frac{\sin x}{x} - \frac{\log (1 + \cos x - 1)}{\cos x - 1}\cdot x\cdot \frac{\cos x - 1}{x^{2}}\right)\notag\\ &= \frac{1}{2}\cdot 2 = 1\notag \end{align}
Thus we can write
\begin{align} L &= \lim_{x \to 0}\frac{f(x) - 1}{x^{4}}\notag\\ &= \lim_{x \to 0}\frac{a(x) - b(x)}{b(x)x^{4}}\notag\\ &= \lim_{x \to 0}\frac{a(x) - b(x)}{x^{7}}\cdot\frac{x^{3}}{b(x)}\notag\\ &= \lim_{x \to 0}\frac{a(x) - b(x)}{x^{7}}\notag\\ &= \frac{1}{7}\lim_{x \to 0}\frac{a'(x) - b'(x)}{x^{6}}\text{ (via L'Hospital's Rule)}\notag\\ &= \frac{1}{7}\lim_{x \to 0}\frac{3(1 + \sec x)\log\sec x - \tan x\{x + \log(\sec x + \tan x)\} -\log\sec x\{1 + \sec x\}}{x^{6}}\notag\\ &= \frac{1}{7}\lim_{x \to 0}\frac{2(1 + \sec x)\log\sec x - \tan x\{x + \log(\sec x + \tan x)\}}{x^{6}}\notag\\ &= \frac{1}{7}\lim_{x \to 0}\frac{2(1 + \cos x)\log\sec x - \sin x\{x + \log(\sec x + \tan x)\}}{x^{6}\cos x}\notag\\ &= \frac{1}{7}\lim_{x \to 0}\frac{2(1 + \cos x)\log\sec x - \sin x\{x + \log(\sec x + \tan x)\}}{x^{6}}\notag\\ \end{align}
I wonder what could be done to go further.


Answer




Let
\begin{eqnarray*} g(x) &=&2(1+\cos x)\log \sec x-\sin x\{x+\log (\sec x+\tan x)\} \\ &=&\{\sin x-2(1+\cos x)\}\log \cos x-x\sin x-\sin x\log (1+\sin x) \\ &=&\{\sin x-2(1+\cos x)\}A(x)-B(x)-C(x) \end{eqnarray*}
where
\begin{eqnarray*} A(x) &=&\log \cos x \\ B(x) &=&x\sin x \\ C(x) &=&\sin x\log (1+\sin x) \end{eqnarray*}



Let us start with B(x).
\begin{eqnarray*} B(x) &=&x\sin x \\ &=&x\left[ \sin x-x+\frac{1}{6}x^{3}+x-\frac{1}{6}x^{3}\right] \\ &=&x\left[ \sin x-x+\frac{1}{6}x^{3}\right] +x^{2}-\frac{1}{6}x^{4} \\ &=&x^{6}\left( \frac{\sin x-x+\frac{1}{6}x^{3}}{x^{5}}\right) +x^{2}-\frac{1% }{6}x^{4}. \end{eqnarray*}
Now let us consider in the same lines A(x)
\begin{eqnarray*} A(x) &=&\log \cos x \\ &=&\log (1+(\cos x-1))-(\cos x-1)+\frac{1}{2}(\cos x-1)^{2} \\ &&+(\cos x-1)-\frac{1}{2}(\cos x-1)^{2} \\ &=&\left( \lim_{x\rightarrow 0}\frac{\log (1+(\cos x-1))-(\cos x-1)+\frac{1}{% 2}(\cos x-1)^{2}}{(\cos x-1)^{3}}\right) \left( \frac{\cos x-1}{x^{2}}% \right) ^{3}\left( x^{6}\right) \\ &&+(\cos x-1)-\frac{1}{2}(\cos x-1)^{2} \end{eqnarray*}
It remains C(x)
\begin{eqnarray*} C(x) &=&\sin x\log (1+\sin x) \\ &=&\sin x(\log (1+\sin x)-\sin x+\frac{1}{2}\sin ^{2}x-\frac{1}{3}\sin ^{3}x+% \frac{1}{4}\sin ^{4}x \\ &&+\sin x-\frac{1}{2}\sin ^{2}x+\frac{1}{3}\sin ^{3}x-\frac{1}{4}\sin ^{4}x) \\ &=&\sin x\left( \log (1+\sin x)-\sin x+\frac{1}{2}\sin ^{2}x-\frac{1}{3}\sin ^{3}x+\frac{1}{4}\sin ^{4}x\right) \\ &&+\sin ^{2}x-\frac{1}{2}\sin ^{3}x+\frac{1}{3}\sin ^{4}x-\frac{1}{4}\sin ^{5}x \\ &=&(x^{6})\left( \frac{\sin x}{x}\right) ^{6}\left( \frac{\log (1+\sin x)-\sin x+\frac{1}{2}\sin ^{2}x-\frac{1}{3}\sin ^{3}x+\frac{1}{4}\sin ^{4}x}{% \sin ^{5}x}\right) \\ &&+\sin ^{2}x-\frac{1}{2}\sin ^{3}x+\frac{1}{3}\sin ^{4}x-\frac{1}{4}\sin ^{5}x. \end{eqnarray*}
Now let us write the resulting expression of g(x) as follows
\begin{eqnarray*} g(x) &=&\{\sin x-2(1+\cos x)\}A(x)-B(x)-C(x) \\ &=&\{\sin x-2(1+\cos x)\}\left( \frac{\log (1+(\cos x-1))-(\cos x-1)+\frac{1% }{2}(\cos x-1)^{2}}{(\cos x-1)^{3}}\right) \left( \frac{\cos x-1}{x^{2}}% \right) ^{3}\left( x^{6}\right) \\ &&+\{\sin x-2(1+\cos x)\}\{(\cos x-1)-\frac{1}{2}(\cos x-1)^{2}\} \\ &&-\left( x^{6}\right) \left( \frac{\sin x-x+\frac{1}{6}x^{3}}{x^{5}}\right) -x^{2}+\frac{1}{6}x^{4} \\ &&-(x^{6})\left( \frac{\sin x}{x}\right) ^{6}\left( \frac{\log (1+\sin x)-\sin x+\frac{1}{2}\sin ^{2}x-\frac{1}{3}\sin ^{3}x+\frac{1}{4}\sin ^{4}x}{% \sin ^{5}x}\right) \\ &&-\sin ^{2}x+\frac{1}{2}\sin ^{3}x-\frac{1}{3}\sin ^{4}x+\frac{1}{4}\sin ^{5}x. \end{eqnarray*}
Divide g(x) by x^{6} it follows that
\begin{eqnarray*} \frac{g(x)}{x^{6}} &=&\left( \sin x-2(1+\cos x)\right) \left( \frac{\log (1+(\cos x-1))-(\cos x-1)+\frac{1}{2}(\cos x-1)^{2}}{(\cos x-1)^{3}}\right) \left( \frac{\cos x-1}{x^{2}}\right) ^{3} \\ &&-\left( \frac{\sin x-x+\frac{1}{6}x^{3}}{x^{5}}\right) -\left( \frac{\sin x% }{x}\right) ^{6}\lim_{x\rightarrow 0}\left( \frac{\log (1+\sin x)-\sin x+% \frac{1}{2}\sin ^{2}x-\frac{1}{3}\sin ^{3}x+\frac{1}{4}\sin ^{4}x}{\sin ^{5}x% }\right) \\ &&+((\sin x-2(1+\cos x))((\cos x-1)-\frac{1}{2}(\cos x-1)^{2}) \\ &&-x^{2}+\frac{1}{6}x^{4}-\sin ^{2}x+\frac{1}{2}\sin ^{3}x-\frac{1}{3}\sin ^{4}x+\frac{1}{4}\sin ^{5}x)/x^{6}. \end{eqnarray*}
Let
\begin{eqnarray*} h(x) &=&\{\sin x-2(1+\cos x)\}\{(\cos x-1)-\frac{1}{2}(\cos x-1)^{2}\} \\ &&-x^{2}+\frac{1}{6}x^{4}-\sin ^{2}x+\frac{1}{2}\sin ^{3}x-\frac{1}{3}\sin ^{4}x+\frac{1}{4}\sin ^{5}x. \end{eqnarray*}
It remains just to prove that
\begin{equation*} \lim_{x\rightarrow 0}\frac{h(x)}{x^{6}}=\frac{7}{120} \end{equation*}
which is an easy computation (with or without) using LHR.



{\bf UPDATE:}

The purpose of the first steps previously done reduced the computation of the limit of % \frac{g(x)}{x^{6}} which is a complicated expression to the computation of
the limit of \frac{h(x)}{x^{6}} which is very simple comparatively to % \frac{g(x)}{x^{6}}. Indeed, one can use the l'Hospital's rule six times
very easily, but before starting to do the derivations some trigonometric
simplifications are used as follows. This is



\begin{equation*} h(x)=(\sin x-2(1+\cos x))((\cos x-1)-\frac{1}{2}(\cos x-1)^{2})-x^{2}+\frac{1% }{6}x^{4}-\sin ^{2}x+\frac{1}{2}\sin ^{3}x-\frac{1}{3}\sin ^{4}x+\frac{1}{4}% \sin ^{5}x. \end{equation*}



Develop the product of the first two parenthesis and next simplifying and
using power-reduction formulas
(https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Multiple-angle_formulae)
\begin{equation*} \begin{array}{ccc} \sin ^{2}\theta =\frac{1-\cos 2\theta }{2} & & \cos ^{2}\theta =\frac{% 1+\cos 2\theta }{2} \\ \sin ^{3}\theta =\frac{3\sin \theta -\sin 3\theta }{4} & & \cos ^{3}\theta =% \frac{3\cos \theta +\cos 3\theta }{4} \\ \sin ^{4}\theta =\frac{3-4\cos 2\theta +\cos 4\theta }{8} & & \cos ^{4}\theta =\frac{3+4\cos 2\theta +\cos 4\theta }{8} \\ \sin ^{5}\theta =\frac{10\sin \theta -5\sin 3\theta +\sin 5\theta }{16} & & \cos ^{5}\theta =\frac{10\cos \theta +5\cos 3\theta +\cos 5\theta }{16}% \end{array} \end{equation*}



one then can re-write h(x)\ as follows

\begin{equation*} h(x)=\frac{1}{6}x^{4}-\frac{35}{32}\sin x-x^{2}-\frac{1}{4}\cos x-\frac{5}{6}% \cos 2x+\frac{1}{4}\cos 3x- \frac{1}{24}\cos 4x+\sin 2x-\frac{21}{% 64}\sin 3x+\frac{1}{64}\sin 5x+\frac{7}{8} \end{equation*}



and therefore derivatives are simply calculated (because there is no power
on the top of sin and cos), so
\begin{equation*} h^{\prime }(x)=\frac{1}{4}\sin x-\frac{35}{32}\cos x-2x+\frac{2}{3}% x^{3}+2\cos 2x-\frac{63}{64}\cos 3x+ \frac{5}{64}\cos 5x+\frac{5}{% 3}\sin 2x-\frac{3}{4}\sin 3x+\frac{1}{6}\sin 4x \end{equation*}
\begin{equation*} h^{\prime \prime }(x)=\frac{1}{4}\cos x+\frac{35}{32}\sin x+2x^{2}+\frac{10}{% 3}\cos 2x-\frac{9}{4}\cos 3x+ \frac{2}{3}\cos 4x-4\sin 2x+\frac{% 189}{64}\sin 3x-\frac{25}{64}\sin 5x- 2 \end{equation*}
\begin{equation*} h^{\prime \prime \prime }(x)=4x+\frac{35}{32}\cos x-\frac{1}{4}\sin x-8\cos 2x+\frac{567}{64}\cos 3x- \frac{125}{64}\cos 5x-\frac{20}{3}\sin 2x+\frac{27}{4}\sin 3x-\frac{8}{3}\sin 4x \end{equation*}
\begin{equation*} h^{(4)}(x)=\frac{81}{4}\cos 3x-\frac{35}{32}\sin x-\frac{40}{3}\cos 2x-\frac{% 1}{4}\cos x-\frac{32}{3} \cos 4x+16\sin 2x-\frac{1701}{64}\sin 3x+% \frac{625}{64}\sin 5x+4 \end{equation*}
\begin{equation*} h^{(5)}(x)=\frac{1}{4}\sin x-\frac{35}{32}\cos x+32\cos 2x-\frac{5103}{64}% \cos 3x+ \frac{3125}{64}\cos 5x+\frac{80}{3}\sin 2x-\frac{243}{4}% \sin 3x+\frac{128}{3}\sin 4x \end{equation*}
\begin{equation*} h^{(6)}(x)=\frac{1}{4}\cos x+\frac{35}{32}\sin x+\frac{160}{3}\cos 2x-\frac{% 729}{4}\cos 3x+ \frac{512}{3}\cos 4x-64\sin 2x+\frac{15\,309}{64}% \sin 3x-\frac{15\,625}{64} \sin 5x \end{equation*}



\begin{eqnarray*} \lim_{x\rightarrow 0}\frac{h(x)}{x^{6}} &=&\lim_{x\rightarrow 0}\frac{% h^{\prime }(x)}{6x^{5}}=\cdots =\lim_{x\rightarrow 0}\frac{h^{(6)}(x)}{6!}=% \frac{h^{(6)}(0)}{6!} \\ &=&\frac{1}{6!}\left( \frac{1}{4}\cos (0)+\frac{160}{3}\cos (0)-\frac{729}{4}% \cos (0)+ \frac{512}{3}\cos (0)\right) \\ &=&\frac{1}{6!}\left( \frac{1}{4}+\frac{160}{3}-\frac{729}{4}+\frac{512}{3}% \right) \\ &=&\frac{7}{120}. \end{eqnarray*}
By the way, one have to verify that at each level (except the last one) the

current derivative is zero for x=0, in order to be able to re-use LHR.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...