Friday, 15 May 2015

sequences and series - If sumr1k=0ck=0, and anto0, does suminftyn=0sumr1k=0ckanr+k converge?



This is a generalization of
the alternating series convergence result
and this:
Is this:n=1(1)n(n1)21n a convergent series?



Here is my question:




If
r1k=0ck=0,
and
an is a
monotonic decreasing series
such that
an0,

does
n=0cnmod
converge?



If a_n = \frac1{n+1},
then the sum does converge
as shown by my question here:
Show that if \sum_{k=1}^m c_k =0 , \sum_{n=0}^{\infty} \sum_{k=1}^m \frac{c_k}{nm+k} converges.




I can show that
the sum does converge
as long as the
a_n satisfies
some smoothness properties:



Assume that
a_n =f(n) ,
where
f(x) is differentiable,
f(x) \to 0,
f'(x) \to 0 ,
and
|f''(x)| < C/x^2
for some C > 0.



Let
s(n) =\sum_{k=0}^{r-1} c_ka_{nr+k} ,
and
S(n) =\sum_{j=0}^n s(j) =\sum_{n=0}^{nr+r-1} a_n .



Then



\begin{array}\\ s(n)-\sum_{k=0}^{r-1} c_ka_{nr} &=\sum_{k=0}^{r-1} c_ka_{nr+k}-\sum_{k=0}^{r-1} c_ka_{nr}\\ &=\sum_{k=0}^{r-1} c_k(a_{nr+k}-a_{nr})\\ &=\sum_{k=0}^{r-1} c_k(f(nr+k)-f(nr))\\ &=\sum_{k=0}^{r-1} c_k(kf'(nr)+(k^2/2)f''(nr+tk)) \quad\text{where }0 \le t \le 1\\ &=\sum_{k=0}^{r-1} c_kkf'(nr)+\sum_{k=0}^{r-1}c_k(k^2/2)f''(nr+tk)\\ &=f'(nr)\sum_{k=0}^{r-1} c_kk+\sum_{k=0}^{r-1}c_k(k^2/2)f''(nr+tk)\\ &=f'(nr)S+s_1(n)\\ \end{array}



where
S = \sum_{k=0}^{r-1} c_kk
and
s_1(n) =\sum_{k=0}^{r-1}c_k(k^2/2)f''(nr+tk) .



Since
\sum_{k=0}^{r-1} c_ka_{nr} =a_{nr}\sum_{k=0}^{r-1} c_k =0 ,
s(n) =f'(nr)S+s_1(n) .



Also,



\begin{array}\\ |s_1(n)| &=|\sum_{k=0}^{r-1}c_k(k^2/2)f''(nr+tk)|\\ &\le\sum_{k=0}^{r-1}|c_k(k^2/2)f''(nr+tk)|\\ &\le\sum_{k=0}^{r-1}|c_k(k^2/2)\frac{C}{(nr+tk)^2}|\\ &\le\sum_{k=0}^{r-1}|c_k(k^2/2)\frac{C}{(nr)^2}|\\ &=\frac{C}{2(nr)^2}\sum_{k=0}^{r-1}|c_kk^2|\\ &=\frac{CC_1}{2(nr)^2} \quad\text{ where } C_1 =\sum_{k=0}^{r-1}|c_kk^2|\\ \end{array}



Therefore,

\sum |s_1(n)|
converges.



If m < n,



\begin{array}\\ S(n)-S(m) &=\sum_{j=m+1}^n s(j)\\ &=\sum_{j=m+1}^n (f'(jr)S+s_1(j))\\ &=S\sum_{j=m+1}^n f'(jr)+\sum_{j=m+1}^ns_1(j)\\ \end{array}



By the smoothness assumption
on f(x),
f'(jr) \approx\frac1{r}\int_{jr}^{jr+r} f'(t)dt ,
so that




\begin{array}\\ \sum_{j=m+1}^n f'(jr) &\approx\sum_{j=m+1}^n \frac1{r}\int_{jr}^{jr+r} f'(t)dt\\ &= \frac1{r}\int_{(m+1)r}^{nr+r} f'(t)dt\\ &= \frac1{r}(-f((m+1)r)+f(nr+r))\\ \end{array}



Since

f(x) \to 0
as x \to \infty,
f(nr+r)-f((m+1)r) \to 0
as m and n \to \infty.



Since
\sum |s_1(n)|
converges,

\sum_{j=m+1}^n s_1(j) \to 0
as m and n \to \infty.



Therefore,
S(n)-S(m) \to 0
as m and n \to \infty,
so
\lim_{n \to \infty} S(n)
exists.


Answer



The partial sums C_N of the sequence c_{n\text{ mod } r} satisfy |C_N| = \left|\sum_{n=0}^Nc_{n\text{ mod }{r}}\right| \leq \sum_{n=0}^{r-1}|c_{n}| and is therefore bounded. Since a_{n} is monotonicly decreasing with \lim\limits_{n\to\infty} a_n = 0 we have that Dirichlet's test apply and it follows that the series \sum c_{n\text{ mod }r}a_n converges.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...