I want to show when the following is true for $p$ a prime number. $(p - 2)! \equiv 1 \pmod p$. Could someone help me prove this? It worked for $p = 2$, $p = 3$, $p = 5$, so I believe it may work for all primes but I need to prove it. I don't know how to apply Wilson's or Fermat's theorem to this. I tried to rewrite it as $(p - 1 - 1)! \equiv 1 \pmod p$ but I still couldn't see how to apply Wilson's theorem to it. Could someone help me?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment