Tuesday, 19 May 2015

limits - intinfty0limmrightarrowinftyxmleft(varepsilonright)evarepsilonmathrmdvarepsilon



In the expression



0limmxm(ε)eεdε




Is it possible to move the integral inside the Newton's iteration?



x_{i + 1} \left( \varepsilon \right) = x_i \left( \varepsilon \right) - \frac{f \left( x_i \left( \varepsilon \right) \right)}{f' \left( x_i \left( \varepsilon \right) \right)}


Answer



You need Dominated convergence theorem or monotone convergence theorem for exchanging limits and integrals. That is, either:




  • x_m(\epsilon)e^{-\epsilon}\le x_{m+1}(\epsilon)e^{-\epsilon} \forall \epsilon\ \forall m (or)


  • There should exist an integrable function f(\epsilon) such that x_m(\epsilon)\le f(\epsilon)\ \forall \epsilon\ \forall m.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...