In the expression
∫∞0limm→∞xm(ε)e−εdε
Is it possible to move the integral inside the Newton's iteration?
x_{i + 1} \left( \varepsilon \right) = x_i \left( \varepsilon \right) - \frac{f \left( x_i \left( \varepsilon \right) \right)}{f' \left( x_i \left( \varepsilon \right) \right)}
Answer
You need Dominated convergence theorem or monotone convergence theorem for exchanging limits and integrals. That is, either:
- x_m(\epsilon)e^{-\epsilon}\le x_{m+1}(\epsilon)e^{-\epsilon} \forall \epsilon\ \forall m (or)
- There should exist an integrable function f(\epsilon) such that x_m(\epsilon)\le f(\epsilon)\ \forall \epsilon\ \forall m.
No comments:
Post a Comment