Thursday, 14 May 2015

notation for this summation



I have a summation of the product of two variable like this $v_{j}f_i$ where

$j=1,2,\dots,d,d+1,\dots, 2d,\dots, nd$ and after each $d$ step $i$ changes from $1$ to $n$, is my notation following correct in this situation?



$$\sum_{j=1}^{nd}\sum_{i=1}^{n} v_j f^{(i)}?$$



what I mean is I want $(v_1+\dots+v_d)f^{(1)}+(v_{d+1}+\dots+v_{2d})f^{(2)}+\dots$


Answer



So you have
$$
\begin{split}
S &= (v_1+\dots+v_d)f^{(1)}+(v_{d+1}+\dots+v_{2d})f^{(2)}+\dots \\

&= f^{(1)}\sum_{k=1}^d v_k + f^{(2)}\sum_{k=d+1}^{2d} v_k + \ldots \\
&= \sum_{i=0}^n f^{(i+1)}\sum_{k=di+1}^{d(i+1)} v_k
\end{split}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...