Saturday, 2 January 2016

probability - Intuition behind expression for expected value in terms of CDF

Let $X$ be a random variable with support on $S \subseteq [0, \infty)$. Let $f$ be the pdf of $X$ and $F$ be the cdf.




I'm trying to get some intuition behind this identity for random variables with support on the nonnegative reals. I have a proof (given below).



$$ E[X] := \int_0^{\infty} f(t)tdt = \int_0^\infty 1 - F(s)ds $$



I've managed to convince myself that it is true, but I don't have the faintest idea why the integral of the complement of the cdf should mean anything in particular, let alone something nice like the expected value.



I got the proof mostly by pushing symbols around and remembering that you can sometimes do nifty things with indicator functions and reordering sums.



Proof




Start with LHS



$$ \int_{t \in [0,\infty)} f(t) t \; dt $$



Express $t$ as integral of indicator function.



$$ \int_{t \in [0,\infty)} f(t) \left( \int_{s \in [0, \infty)} \text{I}[t \ge s] ds \right) dt $$



move constant inside integral.




$$ \int_{t \in [0,\infty)} \left( \int_{s \in [0, \infty)} f(t) \text{I}[t \ge s] ds \right) dt $$



reorder integrals



$$ \int_{s \in [0,\infty)} \left( \int_{t \in [0, \infty)} f(t) \text{I}[t \ge s] dt \right) ds $$



This indicator function is equivalent to evaluating the inner integral on the interval $[s, \infty)$



$$ \int_{s \in [0,\infty)} \left( \int_{t \in [s, \infty)} f(t) dt \right) ds $$




difference of integrals over $[0,\infty)$ and $[0, s)$



$$ \int_{s \in [0,\infty)} \left( \int_{t \in [0, \infty)} f(t) dt - \int_{t \in [0,s)} f(t) dt \right) ds $$



Use the fact that $f$ is a pdf and integrates to one and definition of $F$



$$ \int_{ s \in [0, \infty) } 1 - F(s) ds $$



Thus




$$ \int_{t \in [0,\infty)} f(t)tdt = \int_{s \in [0,\infty)} 1 - F(s)ds $$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...