Sunday, 2 October 2016

sequences and series - Find the summation $frac{1}{1!}+frac{1+2}{2!}+frac{1+2+3}{3!}+ cdots$




What is the value of the following sum?




$$\frac{1}{1!}+\frac{1+2}{2!}+\frac{1+2+3}{3!}+ \cdots$$




The possible answers are:





A. $e$



B. $\frac{e}{2}$



C. $\frac{3e}{2}$



D. $1 + \frac{e}{2}$




I tried to expand the options using the series representation of $e$ and putting in $x=1$, but I couldn't get back the original series. Any ideas?



Answer



Clearly the $r^{th}$ numerator is $1+2+3+...+r= \frac{r(r+1)}{2}$ .



And the $r^{th}$ denominator is $r!$.



Thus $$\displaystyle U_r=\frac{\frac{r(r+1)}{2}}{r!}=\frac{r(r+1)}{2r!}$$



Since the degree of the numerator is $2$ , use partial fractions to find $A,B,C$ such that (If you use partial fractions up to $(r-3)!$ , its' coefficient will be zero when comparing coefficients.)



$\displaystyle U_r=\frac{r(r+1)}{2r!}=\frac{A}{(r-2)!}+\frac{B}{(r-1)!}+\frac{C}{r!}$




$\displaystyle (2r!)\times U_r=(2r!)\times \frac{r(r+1)}{2r!}=(2r!)\times \frac{A}{(r-2)!}+(2r!)\times \frac{B}{(r-1)!}+(2r!)\times \frac{C}{r!}$



So $\displaystyle r(r+1)=r!\times \frac{2A}{(r-2)!}+r!\times \frac{2B}{(r-1)!}+r!\times \frac{2C}{r!}$



.............................................................................



Now observe that



$r!=1\times 2\times 3\times .... \times (r-2)\times(r-1)\times r $




$\Rightarrow r!=(r−2)! ×(r−1)r $ and



$ \Rightarrow r!=(r−1)!×r $



...............................................................................



So $\displaystyle r(r+1)=(r−2)! ×(r−1)r \times \frac{2A}{(r-2)!}+(r−1)!×r\times \frac{2B}{(r-1)!}+r!\times \frac{2C}{r!}$



So $\displaystyle r^2+r = 2A(r-1)r+2Br+ 2C $




Clearly $C=0$ , $B=1$ and $A=\frac{1}{2}$



So $\displaystyle U_r=\frac{r(r+1)}{2r!}=\frac{1}{2(r-2)!}+\frac{1}{(r-1)!}$



$\displaystyle \sum_{r=2}^{\infty}U_r= \frac{1}{2} \left( \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+.....\right)+\left( \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....\right)$



$\displaystyle \sum_{r=2}^{\infty}U_r= \frac{1}{2} \left( e\right)+\left( e-1\right)$



$\displaystyle \sum_{r=1}^{\infty}U_r= U_1+\frac{1}{2} \left( e\right)+\left( e-1\right)=1+\frac{e}{2}+e-1 =\frac{3e}{2}$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...