Calculate below limit
$$\lim_{n\to\infty}\left(\sum_{i=1}^{n}\frac{1}{\sqrt{i}} - 2\sqrt{n}\right)$$
Answer
As a consequence of Euler's Summation Formula, for $s > 0$, $s \neq 1$ we have
$$
\sum_{j =1}^n \frac{1}{j^s} = \frac{n^{1-s}}{1-s} + \zeta(s) + O(|n^{-s}|),
$$
where $\zeta$ is the Riemann zeta function.
In your situation, $s=1/2$, so
$$
\sum_{j =1}^n \frac{1}{\sqrt{j}} = 2\sqrt{n} + \zeta(1/2) + O(n^{-1/2}) ,
$$
and we have the limit
$$
\lim_{n\to \infty} \left( \sum_{j =1}^n \frac{1}{\sqrt{j}} - 2\sqrt{n} \right) = \lim_{n\to \infty} \big( \zeta(1/2) + O(n^{-1/2}) \big) = \zeta(1/2).
$$
No comments:
Post a Comment