Demonstrate how
$$\frac1{x_1} + \frac1{x_2} + \frac1{x_3} + \frac1{x_1x_2} + \frac1{x_2x_3} + \frac1{x_3x_1} = -\frac34$$
where $x_1, x_2, x_3$ are roots of the polynomial $F(x) = x^3 + x^2 + 4x + 4$.
Can someone help me please, thank you!
Demonstrate how
$$\frac1{x_1} + \frac1{x_2} + \frac1{x_3} + \frac1{x_1x_2} + \frac1{x_2x_3} + \frac1{x_3x_1} = -\frac34$$
where $x_1, x_2, x_3$ are roots of the polynomial $F(x) = x^3 + x^2 + 4x + 4$.
Can someone help me please, thank you!
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment