Monday, 15 May 2017

calculus - How can we compute $lim_{xrightarrow 0}frac{sin (x)-x+x^3}{x^3}$ and $lim_{xrightarrow 0}frac{e^x-sin (x)-1}{x^2}$?

Could we compute the limits
$$\lim_{x\rightarrow 0}\frac{\sin (x)-x+x^3}{x^3} \\ \lim_{x\rightarrow 0}\frac{e^x-\sin (x)-1}{x^2}$$
without using the l'Hospital rule and the Taylor expansion?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...