Friday, 26 May 2017

real analysis - Showing $sin(x) 0$ using the mean value theorem

I want to show that $\sin(x) < x$ for all $x>0$, using the mean value theorem.



Since the sine is bounded above by $1$, it's obviously true for $x > 1$. Consider $x \in ]0,1]$. Let $f(x)=\sin(x)$. Choose $a=0$ and $x>0$, then there is, according to the mean value theorem, an $x_0$ between $a$ and $x$ with



$$f'(x_0)=\frac{f(x)-f(a)}{x-a} \Leftrightarrow (\sin(x))'(x_0)= \frac{\sin(x)-\sin(a)}{x} \Leftrightarrow \cos(x_0)=\frac{\sin(x)}{x}$$




Since $1\geq x_0>0 \Rightarrow \cos(x_0) < 1$,



$$\Rightarrow 1 > \cos(x_0)=\frac{\sin(x)}{x} \Rightarrow x > \sin(x)$$



Is my proof correct?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...