I've been trying to compute ∫∞−∞sin(x2)dx via the feynman method with no luck. I was able to compute the Gaussian integral. The trick failed for fresnel integrals. Any suggestions?
here is what ive did for the gaussian
I(t)=(∫t0exp(−x22)dx)2dI(t)dt=2⋅exp(−t22)⋅∫t0exp(−x22)dxx=tbdI(t)d=2⋅exp(−t22)⋅∫10t⋅exp(−t2b22)db=∫102⋅t⋅exp(−(1+b2)t22)db∫102⋅t⋅exp(−(1+b2)t22)db=−2⋅ddt∫10exp((−1+b2)t22)1+b2dbB(t)=∫10exp((−1+b2)t22)1+b2dbdIdt=−2⋅dBdtI(t)=−2B(t)+Ct→0C=−π2t→∞B(∞)=0I(∞)=π2⇒∫∞0exp(−t22)=√π2
Let
S(t)=∫t0sin(x2)dxandC(t)=∫t0sin(x2)dx.
Using the identities
sin(x2)=−12xddxcos(x2)andcos(x2)=12xddxsin(x2),
integrating by parts over [1,t], and passing to the limit as t→∞, one shows that there exist
lim
Moreover, since
S_{\infty}=\int_{0}^{\infty}\frac{\sin y}{2\sqrt y}\,dy=\sum_{k=0}^{\infty}(-1)^{k}a_{k}\quad\text{where}\quad a_{k}=\int_{k\pi}^{(k+1)\pi}\frac{|\sin y|}{2\sqrt y}\,dy
and $00. To evaluate S_{\infty} with the Feynman method, let us introduce the mappings f(t)=\left(\int_{0}^{t}\sin(x^{2})\,dx\right)^{2}+\left(\int_{0}^{t}\cos(x^{2})\,dx\right)^{2},\quad g(t)=\int_{0}^{1}\frac{\sin(t^{2}(1-x^{2}))}{1-x^{2}}\,dx\,. We can check that f'(t)=g'(t) and f(0)=g(0), hence f(t)=g(t) for every t\ge 0. Since g(t)=\int_{0}^{t^{2}}\frac{\sin(2x+x^{2}/t^{2})}{2x+x^{2}/t^{2}}\,dx\to\int_{0}^{\infty}\frac{\sin(2x)}{2x}\,dx=\frac{\pi}{4}\quad\text{as }t\to\infty\,, we obtain that S_{\infty}^{2}+C_{\infty}^{2}=\frac{\pi}{4}\,. Proving that (*)\qquad S_{\infty}^{2}=C_{\infty}^{2}\,, we conclude that S_{\infty}=\sqrt{\pi/8}. To show (*) we introduce the mappings F(t)=\left(\int_{0}^{t}\cos(x^{2})\,dx\right)^{2}-\left(\int_{0}^{t}\sin(x^{2})\,dx\right)^{2},\quad G(t)=\int_{0}^{1}\frac{\sin(t^{2}(1+x^{2}))}{1+x^{2}}\,dx\,. One can check that F'(t)=G'(t) and F(0)=G(0), hence F(t)=G(t) for every t\ge 0 and in particular C_{\infty}^{2}-S_{\infty}^{2}=\lim_{t\to\infty}G(t)=\lim_{t\to\infty}\int_{0}^{t}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy\,. We split \int_{0}^{t}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy=\int_{0}^{1}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy+\int_{1}^{t}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy and we observe that \left|\int_{0}^{1}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy\right|\le\frac{1}{t} whereas \begin{equation*} \begin{split} \int_{1}^{t}\frac{t}{y^{2}+t^{2}}\,\sin(y^{2}+t^{2})\,dy&=\left[-\frac{t\cos(y^{2}+t^{2})}{2y(y^{2}+t^{2})}\right]_{y=1}^{y=t}\\ &\qquad-\frac{1}{2t}\int_{1}^{t}\frac{3t^{2}y^{2}+t^{4}}{y^{2}(y^{4}+2t^{2}y^{2}+t^{4})}\,\cos(y^{2}+t^{2})\,dy \end{split} \end{equation*} and one can easily see that each term tends to zero as t\to\infty. Hence (*)$ is proved.
No comments:
Post a Comment