Tuesday, 23 May 2017

summation - How find this sum $f(x)=sum_{n=1}^{infty}frac{x^{n^2}}{n}$

First, Merry Christmas everyone!



Find this sum
$$f(x)=\sum_{n=1}^{\infty}\dfrac{x^{n^2}}{n},1>x\ge 0 \tag{1}$$




This problem is creat by Laurentiu Modan.and I can't see this solution.



I know this sum
$$\sum_{n=1}^{\infty}\dfrac{x^n}{n}=-\ln{(1-x)},-1\le x<1$$



and I know this
$$\sum_{n=1}^{\infty}x^{n^2}\approx \dfrac{\sqrt{\pi}}{2\sqrt{1-x}},x\to 1^{-}$$



But for $(1)$,I can't find it,Thank you.




This problem is from this
enter image description here

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...