Saturday, 20 May 2017

calculus - Calculate: $limlimits_{x to infty}left(frac{x^2+2x+3}{x^2+x+1} right)^x$



How do I calculate the following limit without using l'Hôpital's rule?



$$\lim_{x \to \infty}\left(\frac{x^2+2x+3}{x^2+x+1} \right)^x$$


Answer




$$\lim_{x \rightarrow \infty}\left(\frac{x^2+2x+3}{x^2+x+1} \right)^x$$



$$=\lim_{x \rightarrow \infty}\left(1+\frac{x+2}{x^2+x+1} \right)^x$$



$$=\lim_{x \rightarrow \infty}\left(\left(1+\frac{x+2}{x^2+x+1} \right)^\frac{x^2+x+1}{x+2}\right)^{\frac{x(x+2)}{x^2+x+1}}$$



$$=e$$ as $\lim_{x\to\infty}\frac{x(x+2)}{x^2+x+1}=\lim_{x\to\infty}\frac{(1+2/x)}{1+1/x+1/{x^2}}=1$



and $\lim_{x\to\infty}\left(1+\frac{x+2}{x^2+x+1} \right)^\frac{x^2+x+1}{x+2}=\lim_{y\to\infty}\left(1+\frac1y\right)^y=e$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...