How do I calculate the following limit without using l'Hôpital's rule?
limx→∞(x2+2x+3x2+x+1)x
Answer
limx→∞(x2+2x+3x2+x+1)x
=limx→∞(1+x+2x2+x+1)x
=limx→∞((1+x+2x2+x+1)x2+x+1x+2)x(x+2)x2+x+1
=e
as limx→∞x(x+2)x2+x+1=limx→∞(1+2/x)1+1/x+1/x2=1
and limx→∞(1+x+2x2+x+1)x2+x+1x+2=limy→∞(1+1y)y=e
No comments:
Post a Comment