Saturday, 20 May 2017

calculus - Calculate: limlimitsxtoinftyleft(fracx2+2x+3x2+x+1right)x



How do I calculate the following limit without using l'Hôpital's rule?



lim


Answer




\lim_{x \rightarrow \infty}\left(\frac{x^2+2x+3}{x^2+x+1} \right)^x



=\lim_{x \rightarrow \infty}\left(1+\frac{x+2}{x^2+x+1} \right)^x



=\lim_{x \rightarrow \infty}\left(\left(1+\frac{x+2}{x^2+x+1} \right)^\frac{x^2+x+1}{x+2}\right)^{\frac{x(x+2)}{x^2+x+1}}



=e as \lim_{x\to\infty}\frac{x(x+2)}{x^2+x+1}=\lim_{x\to\infty}\frac{(1+2/x)}{1+1/x+1/{x^2}}=1



and \lim_{x\to\infty}\left(1+\frac{x+2}{x^2+x+1} \right)^\frac{x^2+x+1}{x+2}=\lim_{y\to\infty}\left(1+\frac1y\right)^y=e


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...