Saturday 13 May 2017

calculus - Why can this differential equation be written in $3$ different ways?



Suppose we have the following differential equation using operator notation: $$(D-x)(D+x)y=0\tag{1}$$ where $$D=\frac{d}{dx}$$




Now I could rewrite $(1)$ as $$\begin{align}\require{enclose}(D-x)(D+x)y&=\left(\frac{d}{dx}-x\right)\left(y^{\prime}+xy\right)\\&=y^{\prime\prime}+\bbox[#AFA]{\left(xy\right)^{\prime}}-xy^{\prime}-x^2y\\&=y^{\prime\prime}+\bbox[#AFA]{y+\enclose{downdiagonalstrike}{xy^{\prime}}}-\enclose{downdiagonalstrike}{xy^{\prime}}-x^2y\\&\implies \fbox{$y^{\prime\prime}-x^2y + y = 0$}\tag{a}\end{align}$$



Or, by switching the order of the brackets; I could rewrite $(1)$ as $$\begin{align}\require{enclose}(D-x)(D\color{blue}{\textbf{ + }}x)y&=(D+x)(D\color{red}{\textbf{ - }}x)y\\&=\left(\frac{d}{dx}+x\right)\left(y^{\prime}-xy\right)\\&=y^{\prime\prime}\bbox[#FAA]{-\left(xy\right)^{\prime}}+xy^{\prime}-x^2y\\&=y^{\prime\prime}\bbox[#FAA]{-y-\enclose{downdiagonalstrike}{xy^{\prime}}}+\enclose{downdiagonalstrike}{xy^{\prime}}-x^2y\\&\implies \fbox{$y^{\prime\prime}-x^2y - y = 0$}\tag{b}\end{align}$$



Lastly, I could rewrite $(1)$ as $$\begin{align}\require{enclose}(D-x)(D+x)y&=(D^2-x^2)y\\&=\left(\frac{d^2}{dx^2}-x^2\right)y\\&=y^{\prime\prime}-x^2y\\&\implies\ \fbox{$y^{\prime\prime}-x^2y = 0$}\tag{c}\end{align}$$



There's no doubt there's most probably a simple explanation for it; but how can the same differential equation $(1)$ be written in three different ways: $(\mathrm{a})$, $(\mathrm{b})$, $(\mathrm{c})$?



Many thanks.


Answer




$D+x$ and $D-x$ do not commute. Your (b) is a demonstration of this.



In (c) you are equating $(D+x)(D-x)$ and $D^2-x^2$, but that is wrong for a similar reason - in $D^2-x^2$ the first $D$ is no longer acting on the second $x$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...