Friday, 26 May 2017

trigonometry - How to simplify the ratio $1 - cos2x + isin2x over 1 + cos2x - isin 2x$



The ratio is as follows:



$$1 - \cos2x + i\sin2x \over 1 + \cos2x - i\sin 2x$$




I am unsure how to simplify this, as the numerator poses a problem as I try to multiply this equation by $\operatorname{cis}(2x)$ to get a real denominator.


Answer



HINT



Recall that




  • $\cos t = \frac{e^{it}+e^{-it}}{2}$


  • $\sin t = \frac{e^{it}-e^{-it}}{2i}$




No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...