Here's a little number theory problem I'm wrestling with.
Let p and q be odd prime numbers with p=q+4a for some a∈Z. Prove that (ap)=(aq),
where (ap) is the Legendre symbol. I have been trying to use the law of quadratic reciprocity but to no avail. Can you help?
Answer
Note that p \equiv q \pmod{4}, so \frac{p-1}{2}\frac{q+1}{2} \equiv \frac{p-1}{2}\frac{p+1}{2} \equiv 0 \pmod{2}.
\begin{align} \left(\frac{a}{p}\right)=\left(\frac{4a}{p}\right)=\left(\frac{p-q}{p}\right)& =\left(\frac{-q}{p}\right) \\ & =\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) \\ &=(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \\ &=(-1)^{\frac{p-1}{2}\frac{q+1}{2}}\left(\frac{p-q}{q}\right) \\ &=\left(\frac{4a}{q}\right) \\ &=\left(\frac{a}{q}\right) \end{align}
No comments:
Post a Comment