Tuesday, 23 May 2017

elementary number theory - Let p=q+4a. Prove that left(fracapright)=left(fracaqright).



Here's a little number theory problem I'm wrestling with.



Let p and q be odd prime numbers with p=q+4a for some aZ. Prove that (ap)=(aq),




where (ap) is the Legendre symbol. I have been trying to use the law of quadratic reciprocity but to no avail. Can you help?


Answer



Note that p \equiv q \pmod{4}, so \frac{p-1}{2}\frac{q+1}{2} \equiv \frac{p-1}{2}\frac{p+1}{2} \equiv 0 \pmod{2}.



\begin{align} \left(\frac{a}{p}\right)=\left(\frac{4a}{p}\right)=\left(\frac{p-q}{p}\right)& =\left(\frac{-q}{p}\right) \\ & =\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) \\ &=(-1)^{\frac{p-1}{2}}\left(\frac{p}{q}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \\ &=(-1)^{\frac{p-1}{2}\frac{q+1}{2}}\left(\frac{p-q}{q}\right) \\ &=\left(\frac{4a}{q}\right) \\ &=\left(\frac{a}{q}\right) \end{align}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...