Friday, 7 September 2018

calculus - $dfrac{2}{pi} = dfrac{sqrt 2}{2} cdot dfrac{sqrt {2+sqrt 2}}{2} cdotdfrac{sqrt {2+sqrt {2+sqrt 2}}}{2} cdots $



One can show inductively that
$$
\cos \frac{\pi}{2^{n+1}}\ = \frac{\sqrt {2+\sqrt {2+\sqrt {2+\sqrt {\cdots+\sqrt {2 }}}}}}{2},
$$
with $n$ square roots in the right side of the equation.



The second part of the question was to deduct the following from the first part:




$$\frac{2}{\pi} = \frac{\sqrt 2}{2} \cdot \frac{\sqrt {2+\sqrt 2}}{2} \cdot\frac{\sqrt {2+\sqrt {2+\sqrt 2}}}{2} \cdot \cdots $$



with the hint to use the following limit:



$$\lim_{n\to \infty}\cos\Big(\frac{t}{2}\Big)\cos\Big(\frac{t}{2^2}\Big)\cdots\cos\Big(\frac{t}{2^n}\Big) = \frac{\sin t}{t}.$$



A hint or some general intuition will be appreciated.


Answer



Using the trogonometric identity
$$

\sin (2a)=2\sin a\,\cos a\qquad\text{or}\qquad \cos a=\frac{\sin 2a}{2\sin a},
$$
provided that $\,\sin a\ne 0,\,$ we obtain that
$$
\cos(x/2)\cos(x/4)\cdots\cos(x/2^n)=\frac{\sin x}{2\sin(x/2)}\frac{\sin (x/2)}{2\sin(x/4)}\cdots\frac{\sin (x/2^{n-1})}{2\sin(x/2^n)}=\frac{\sin x}{2^n\sin(x/2^n)}.
$$
Hence



$$
\lim_{n\to\infty}\cos(x/2)\cos(x/4)\cdots\cos(x/2^n)=\frac{\sin x}{x},

$$
since
$$
\lim_{t\to 0}\frac{\sin(tx)}{t}=x.
$$
In particular,
$$
\prod_{n=1}^\infty \cos\left(\frac{\pi}{2^{n+1}}\right)=\frac{2}{\pi}.
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...