Friday, 7 September 2018

calculus - dfrac2pi=dfracsqrt22cdotdfracsqrt2+sqrt22cdotdfracsqrt2+sqrt2+sqrt22cdots



One can show inductively that
cosπ2n+1 =2+2+2++22,
with n square roots in the right side of the equation.



The second part of the question was to deduct the following from the first part:




2π=222+222+2+22



with the hint to use the following limit:



lim



A hint or some general intuition will be appreciated.


Answer



Using the trogonometric identity
\sin (2a)=2\sin a\,\cos a\qquad\text{or}\qquad \cos a=\frac{\sin 2a}{2\sin a},
provided that \,\sin a\ne 0,\, we obtain that
\cos(x/2)\cos(x/4)\cdots\cos(x/2^n)=\frac{\sin x}{2\sin(x/2)}\frac{\sin (x/2)}{2\sin(x/4)}\cdots\frac{\sin (x/2^{n-1})}{2\sin(x/2^n)}=\frac{\sin x}{2^n\sin(x/2^n)}.
Hence



\lim_{n\to\infty}\cos(x/2)\cos(x/4)\cdots\cos(x/2^n)=\frac{\sin x}{x},
since
\lim_{t\to 0}\frac{\sin(tx)}{t}=x.
In particular,
\prod_{n=1}^\infty \cos\left(\frac{\pi}{2^{n+1}}\right)=\frac{2}{\pi}.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...