Wednesday, 19 September 2018

calculus - Proving limit at infinity of a rational function








I need to prove these statements:



Let $f(x)=\sum_{j=0}^{n}a_jx^j$ , $g(x)=\sum_{j=0}^{m}b_jx^j$.




  • $$\deg(g)\gt \deg(f) \implies \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=0$$

  • $$\deg(g)= \deg(f) \implies \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=\frac{a_n}{b_n}$$

  • $$\deg(f)\gt \deg(g) \implies \lim_{x\rightarrow \infty}\frac{f(x)}{g(x)}=\pm \infty$$




Is there any proof that would help me in all three statements, so that my answer can be shorter? I'm pretty sure I know how to do it, but I am trying to think of a cleaver way to shorten my answer.



Thanks!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...