Monday, 24 September 2018

trigonometry - Solve, for $0 leq x < 360$, $5sin 2x = 2cos 2x$. What about $cos theta = 0$?




Solve $5\sin 2x = 2\cos 2x$ for $0 \leq x < 360^\circ$.





Let $\theta = 2x$. Then
$(5\tan \theta -2)\cos \theta = 0.$



So $\tan \theta = \dfrac 2 5$ or $\cos \theta = 0.$



Calculating the above value gives:



$\theta = 45.0^\circ, 135.0^\circ, 225.0^\circ, 315.0^\circ, 10.9^\circ, 100.9^\circ, 190.9^\circ$, or $280.9^\circ.$




But looking at the marking scheme strictly states:




$x = 10.9, 100.9, 190.9, 280.9$ (Allow awrt)
Extra solution(s) in range: Loses the final A mark.




As you can see this is only solution to the $\tan \theta = \dfrac 5 2$.
What am I missing here? Why is $\cos \theta = 0$ not a correct solution?



Is factorising $\cos \theta$ unnecessary because when $\cos \theta = 0$,
$\tan \theta = \dfrac {\sin \theta}{\cos \theta}$ is undefined so that renders the equation useless?




Many thanks in advance.


Answer



Another method if you are interested. $5 \sin(2x)-2 \cos(2x)=0 \\ \frac{5}{\sqrt{29}} \sin(2x)-\frac{2}{\sqrt{29}} \cos(2x)=0 \\ \sin(\theta)\sin(2x)-\cos(\theta)\cos(2x)=0 \\ \cos(\theta+2x)=0 \\ \theta+2x=\frac{\pi}{2}+n \pi \\ 2x=\frac{\pi}{2}+n \pi-\theta \\ \text{ where } \theta=\arccos(\frac{2}{\sqrt{29}})$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...