Let $Y$ be a positive random variable. For $\alpha>0$ show that
$E(Y^{\alpha})=\alpha \int_{0}^{\infty}t^{\alpha -1}P(Y>t)dt$.
My ideas:
$E(Y^{\alpha})= \int_{-\infty}^{\infty}t^{\alpha}f_{Y}(t)dt$
=$\int_{0}^{\infty}t^{\alpha}f_{Y}(t)dt$
=$\int_{0}^{\infty}(\int_{0}^{t^{\alpha}}dy)f_{Y}(t)dt$
Answer
$E(Y^\alpha)=\int_0^\infty t^\alpha f_y(t)dt$. Let $G_y(t)=P(Y\gt t)=1-F_y(t)$. Therefore $G'_y(t)=-f_y(t)$. Integrate $E(Y^\alpha)$ by parts and get $E(Y^\alpha)=-t^\alpha G_y(t)\rbrack_0^\infty +\alpha \int_0^\infty t^{\alpha-1}G_y(t)dt={\alpha \int_0^\infty t^{\alpha-1}P(Y\gt t)dt}$.
No comments:
Post a Comment