Monday, 17 September 2018

real analysis - Evaluate $f(x)=sum_0^inftyfrac{x^n}{n!!}$.

A question from Introduction to Analysis by Arthur Mattuck:




Let $n!!=n(n-2)(n-4)\cdot…\cdot k$, where $k=1$ or $2$,depending on whether n is odd or even. (define $0!!=1$.)




Evaluate the sum $f(x)=\sum_0^\infty\frac{x^n}{n!!},$ using term-by-term differentiation and integration.




I think what the question asked is to give an explicit form for this sum.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...