Monday, 17 September 2018

Sum of the series $sum frac{n}{2^{n}}$




I know that the series converges by d'Alembert ratio test, where $\lim\left ( \frac{A_{n+1}}{A_{n}} \right )= \frac{1}{2}$, but I don't know how to calculate the sum of the serie. Thanks for the help.


Answer




$\sum_{k=0}^\infty x^n = \frac{1}{1-x}$ for $|x|<1$.
Then
$\sum_{k=1}^\infty nx^n = x\times \left(\frac{1}{1-x}\right)'$ for $|x|<1$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...