Wednesday, 5 September 2018

calculus - Given: limlimitsntoinftyan=0 prove limlimitsntoinftyfrac1an=infty




Please help me to prove lim then \displaystyle\lim_{n\to\infty}\frac{1}{a_n}=\infty
Please give me a hint, not a full solution.



I know how to prove a_n\to\infty \Rightarrow \frac{1}{a_n}\to0, but not the other way around.



The original problem:
Given \forall a\in\left\{ a_n \right\}, a<0 and \displaystyle\lim_{n\to\infty}a_n=0 prove: \displaystyle\lim_{n\to\infty}\frac{1}{a_n}=-\infty


Answer



Since \{a_n\} is negative and a_n\to 0, for each M\in\mathbb{N} there exists N such that $-\frac{1}{M}


Therefore \frac{1}{a_n}<-M for all n\geq N, which implies that \frac{1}{a_n}\to-\infty.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...