Please help me to prove lim then \displaystyle\lim_{n\to\infty}\frac{1}{a_n}=\infty
Please give me a hint, not a full solution.
I know how to prove a_n\to\infty \Rightarrow \frac{1}{a_n}\to0, but not the other way around.
The original problem:
Given \forall a\in\left\{ a_n \right\}, a<0 and \displaystyle\lim_{n\to\infty}a_n=0 prove: \displaystyle\lim_{n\to\infty}\frac{1}{a_n}=-\infty
Answer
Since \{a_n\} is negative and a_n\to 0, for each M\in\mathbb{N} there exists N such that $-\frac{1}{M}
Therefore \frac{1}{a_n}<-M for all n\geq N, which implies that \frac{1}{a_n}\to-\infty.
No comments:
Post a Comment