Let $A$ be a plane area bounded by a curve $\partial A$. Then, is
$$ \iint_A \nabla f\, \textrm{d}x \textrm{d}y = \oint_{\partial A} f\ \hat{\mathbf{n}}\ dl $$
where $f=f(x,y)$ and $\mathbf{\hat n}$ is the outward unit normal?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment