Monday, 4 February 2019

elementary number theory - Proving that $ 30 mid ab(a^2+b^2)(a^2-b^2)$



How can I prove that $30 \mid ab(a^2+b^2)(a^2-b^2)$ without using $a,b$ congruent modulo $5$ and then
$a,b$ congruent modulo $6$ (for example) to show respectively that $5 \mid ab(a^2+b^2)(a^2-b^2)$ and
$6 \mid ab(a^2+b^2)(a^2-b^2)$?



Indeed this method implies studying numerous congruences and is quite long.


Answer



You need to show $ab(a^2 - b^2)(a^2 + b^2)$ is a multiple of 2,3, and 5 for all $a$ and $b$.




For 2: If neither $a$ nor $b$ are even, they are both odd and $a^2 \equiv b^2 \equiv 1 \pmod 2$, so that 2 divides $a^2 - b^2$.



For 3: If neither $a$ nor $b$ are a multiple of 3, then $a^2 \equiv b^2 \equiv 1 \pmod 3$, so 3 divides $a^2 - b^2$ similar to above.



For 5: If neither $a$ nor $b$ are a multiple of 5, then either $a^2 \equiv 1 \pmod 5$ or $a^2 \equiv -1 \pmod 5$. The same holds for $b$. If $a^2 \equiv b^2 \pmod 5$ then 5 divides $a^2 - b^2$, while if $a^2 \equiv -b^2 \pmod 5$ then 5 divides $a^2 + b^2$.



This does break into cases, but as you can see it's not too bad to do it systematically like this.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...