How can I prove that $30 \mid ab(a^2+b^2)(a^2-b^2)$ without using $a,b$ congruent modulo $5$ and then
$a,b$ congruent modulo $6$ (for example) to show respectively that $5 \mid ab(a^2+b^2)(a^2-b^2)$ and
$6 \mid ab(a^2+b^2)(a^2-b^2)$?
Indeed this method implies studying numerous congruences and is quite long.
Answer
You need to show $ab(a^2 - b^2)(a^2 + b^2)$ is a multiple of 2,3, and 5 for all $a$ and $b$.
For 2: If neither $a$ nor $b$ are even, they are both odd and $a^2 \equiv b^2 \equiv 1 \pmod 2$, so that 2 divides $a^2 - b^2$.
For 3: If neither $a$ nor $b$ are a multiple of 3, then $a^2 \equiv b^2 \equiv 1 \pmod 3$, so 3 divides $a^2 - b^2$ similar to above.
For 5: If neither $a$ nor $b$ are a multiple of 5, then either $a^2 \equiv 1 \pmod 5$ or $a^2 \equiv -1 \pmod 5$. The same holds for $b$. If $a^2 \equiv b^2 \pmod 5$ then 5 divides $a^2 - b^2$, while if $a^2 \equiv -b^2 \pmod 5$ then 5 divides $a^2 + b^2$.
This does break into cases, but as you can see it's not too bad to do it systematically like this.
No comments:
Post a Comment