Consider having a matrix whose structure is the following:
$$
A =
\begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3} & 0 & 0 & 0 & 0 & 0 & 0\\
a_{2,1} & a_{2,2} & a_{2,3} & 0 & 0 & 0 & 0 & 0 & 0\\
a_{3,1} & a_{3,2} & a_{3,3} & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & a_{4,4} & a_{4,5} & a_{4,6} & 0 & 0 & 0\\
0 & 0 & 0 & a_{5,4} & a_{5,5} & a_{5,6} & 0 & 0 & 0\\
0 & 0 & 0 & a_{6,4} & a_{6,5} & a_{6,6} & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & a_{7,7} & a_{7,8} & a_{7,9}\\
0 & 0 & 0 & 0 & 0 & 0 & a_{8,7} & a_{8,8} & a_{8,9}\\
0 & 0 & 0 & 0 & 0 & 0 & a_{9,7} & a_{9,8} & a_{9,9}\\
\end{pmatrix}
$$
Question.
What about its determinant $|A|$?.
Another question
I was wondering that maybe matrix $A$ can be expressed as a product of particular matrices to have such a structure... maybe using these matrices:
$$
A_1 =
\begin{pmatrix}
a_{1,1} & a_{1,2} & a_{1,3}\\
a_{2,1} & a_{2,2} & a_{2,3}\\
a_{3,1} & a_{3,2} & a_{3,3}\\
\end{pmatrix}
$$
$$
A_2 =
\begin{pmatrix}
a_{4,4} & a_{4,5} & a_{4,6}\\
a_{5,4} & a_{5,5} & a_{5,6}\\
a_{6,4} & a_{6,5} & a_{6,6}\\
\end{pmatrix}
$$
$$
A_2 =
\begin{pmatrix}
a_{7,7} & a_{7,8} & a_{7,9}\\
a_{8,7} & a_{8,8} & a_{8,9}\\
a_{9,7} & a_{9,8} & a_{9,9}\\
\end{pmatrix}
$$
I can arrange $A$ as a compination of those: $A = f(A_1,A_2,A_3)$
Kronecker product
One possibility can be the Kronecker product:
$$
A=
\begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
\end{pmatrix} \otimes A_1 +
\begin{pmatrix}
0 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 0\\
\end{pmatrix} \otimes A_2 +
\begin{pmatrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 1\\
\end{pmatrix} \cdot A_3
$$
But what about the determinant??? There are sums in this case which is not good...
Answer
As stated as a comment, the result is here. It really makes block diagonal matrices wonderful, hence finding canonical forms important.
No comments:
Post a Comment