Sunday 17 February 2019

elementary number theory - Simple Mersenne prime divisibility proofs



From "Fundamentals of Number Theory" by William J. LeVeque:




$M_n=2^n-1$.




Show that if $n=rs$, $M_r$ divides $M_n$.




My proof is:




$(M_n=2^n-1)+(n=rs) => (M_{rs}=2^{rs}-1)=>(M_{rs}=(2^r)^s-1)$



$(M_r=2^r-1)=>(M_r+1=2^r)$




$M_{rs}=(M_r+1)^s-1$



In the expansion of $(M_r+1)^s$, all components are of the form $M_rX$, except for the product of all ones. This follows from the combinatorial constraints. Therefore $M_n$ is of the form



$M_n=M_{rs}=M_r(X_1+X_2+...)+1-1$.



Thus $M_r|M_n$.








I have two questions:



1) Is this proof correct/acceptable?



2) In what other ways can this problem be solved? Specifically I am interested in what other kinds of algebraic/logical/mathematical manipulations could be used.



Thanks in advance!


Answer



Note $\rm\ f_n\! :=\ a^n\!-1\ =\ a^{n-m} \: (a^m\!-1) + a^{n-m}\!-1\:$,$\ $ i.e. $\rm\ f_n = k\ f_m + f_{n-m}\equiv f_{n-m}\pmod{f_m}\:$ so




THEOREM $\: $ Let $\rm\ f_n\: $ be an integer sequence with $\rm\ f_{\:0} =\: 0\:\ $ and $\rm\ \: f_n\equiv f_{n-m}\ (mod\ f_m)\ $ for $\rm\: n > m\:$. Then $\rm\:\ (f_n,f_m)\ =\ f_{(n,\:m)}\ \: $ where $\rm\ (i,\:j)\ $ denotes $\rm\ gcd(i,\:j)\:$.



Proof $\ $ By induction on $\rm\:n + m\:$. The theorem is trivially true if $\rm\ n = m\ $ or $\rm\ n = 0\ $ or $\rm\: m = 0\:$.
So we may assume $\rm\:n > m > 0\:$.$\ $ Note $\rm\ (f_n,f_m)\: =\ (f_{n-m},f_m)\ $ follows from the hypothesis.
Since $\rm\:\ (n-m)+m \ <\ n+m\: ,\ $ induction yields $\rm\ \ (f_{n-m},f_m)\ =\ f_{(n-m,\:m)}\ =\ f_{(n,\:m)}\ \ $ QED



In particular $\rm\:(M_R,M_{RS}) = M_{(R,RS)} = M_R\ $ so $\rm\ M_R\:|\: M_{RS}$



See also this post for a conceptual proof exploiting the innate structure - an order ideal, and look up divisibility sequence to learn more about the essence of the matter.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...