There is an integral
P∫∞−∞e−k21−kdk
where P means Cauchy principal value.
Mathematica gives the result (as the screent shot shows)
P∫∞−∞e−k21−kdk=πeerfi(1)=πe⋅2√π∫10eu2du
Mathematica screen shot
where erfi(x) is imaginary error function define as
erfi(z)=−i⋅erf(iz)
erf(x)=2√π∫x0e−t2dt
How can we get the right hand side from left hand side?
Answer
For a∈R define
f(a)≡ea2P∞∫−∞e−k2a−kdk=ea2P∞∫−∞e−(x−a)2xdx=lim
In the last step we have used that the integrand is in fact an analytic function (with value 4a at the origin). The usual arguments show that f is analytic as well and we can differentiate under the integral sign to obtain
f'(a) = 2 \int \limits_0^\infty \left[\mathrm{e}^{-x^2 + 2 a x} + \mathrm{e}^{-x^2 - 2 a x}\right]\, \mathrm{d} x = 2 \int \limits_{-\infty}^\infty \mathrm{e}^{-x^2 + 2 a x}\, \mathrm{d} x = 2 \sqrt{\pi} \, \mathrm{e}^{a^2} \, , \, a \in \mathbb{R} \, .
Since f(0) = 0,
f(a) = 2 \sqrt{\pi} \int \limits_0^a \mathrm{e}^{t^2} \, \mathrm{d} t = \pi \operatorname{erfi}(a)
follows for a \in \mathbb{R}. This implies
\mathcal{P} \int \limits_{-\infty}^{\infty} \frac{\mathrm{e}^{-k^2}}{a-k} \, \mathrm{d} k = \pi \mathrm{e}^{-a^2} \operatorname{erfi}(a) \, , \, a \in \mathbb{R} \, .
No comments:
Post a Comment