Thursday, 14 February 2019

Finding the modulus of a complex number 1eitheta



I have an answer for this question, but I'm not very confident with it:



|1eiθ|2 i.e. find the square of the modulus of 1-eiθ



eiθ=R(cosθ+isinθ), R=1



= cosθ+isinθ




In cartesian form:



a=Rcosθcosθ



b=Rsinθsinθ





\Rightarrow \left | 1-e^i\theta \right | = \left | 1-cos\theta-isin\theta \right |




Where the real part, a, = 1-cos\theta
and the imaginary, b, = -sin\theta



The modulus of a complex number being \sqrt{a^{2} +b^{2}}



\therefore \left | 1-cos\theta-isin\theta \right | = \sqrt{(1-cos\theta)^{2} + (-sin\theta)^{2}}



\Rightarrow \left | 1-cos\theta-isin\theta \right |^{2} = (1-cos\theta)^{2} + (-sin\theta)^{2} \Rightarrow 1-2cos\theta +cos^{2}\theta +sin^{2}\theta \Rightarrow (\because cos^{2}\theta +sin^{2}\theta = 1) = 2-2cos\theta



Is this correct? Or is my approach incorrect? Thanks in advance for any feedback/help :)



Answer



Your argument is lengthy, but sound.



If just the square of the modulus is needed, you can consider that |z|^2=z\bar{z}, so
|1-e^{i\theta}|^2=(1-e^{i\theta})(1-e^{-i\theta})= 1-(e^{i\theta}+e^{-i\theta})+1=2-2\cos\theta



If also the argument is needed, the trick with 1-e^{i\theta} (but also 1+e^{i\theta}) is to set

\theta=2\alpha
and rewrite
1-e^{i\theta}=1-e^{2i\alpha}= -e^{i\alpha}(e^{i\alpha}-e^{-i\alpha})=-2i(\sin\alpha)e^{i\alpha}
Since 0\le\theta<2\pi, we have 0\le\alpha<\pi, so \sin\alpha\ge0. Hence the modulus is 2\sin\alpha and, from -i=e^{3i\pi/2}, the argument is
\alpha+\frac{3\pi}{2}
(up to an integer multiple of 2\pi).



Thus the square of the modulus is
4\sin^2\alpha=4\sin^2\frac{\theta}{2}=4\frac{1-\cos\theta}{2}= 2(1-\cos\theta)


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...