Let $p$ and $q$ be distinct primes.
I wonder is the following statement always true?
$$\gcd(x^p-1, x^q-1) \stackrel{?}{=} x-1$$
Answer
More generally, we have $\gcd(x^n-1,x^m-1)=x^{\gcd(n,m)}-1$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment