I want to evaluate the following integral using the tangent half-angle substitution t=tan(x2): ∫2π01−cosx3+cosx dx However, making the substitution gives me 0 for each of the limits of integration, which is obviously incorrect. I know that one way to solve this problem is to notice that, by symmetry, the equivalent integral 2∫π01−cosx3+cosx dx allows the subsitution to work. What are ways to make this substitution work without noticing this symmetry? I know that this general question has been asked on here before, but I am specifically interested in how I can make it work with this substitution.
Subscribe to:
Post Comments (Atom)
real analysis - How to find limhrightarrow0fracsin(ha)h
How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Ok, according to some notes I have, the following is true for a random variable X that can only take on positive values, i.e P(X \int_0^...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment