Monday, 14 October 2013

real analysis - If f(x) is continuous on [a,b] and M=max;|f(x)|, is M=limlimitsntoinftyleft(intba|f(x)|n,mathrmdxright)1/n?




Let f(x) be a continuous real-valued function on [a,b] and M=max. Is it true that:
M= \lim_{n\to\infty}\left(\int_a^b|f(x)|^n\,\mathrm dx\right)^{1/n} ?



Thanks!


Answer



Put S_{\delta}:=\{x\in\left[a,b\right], |f(x)|\geq M-\delta\} for any \delta>0. Then we have for all n
M\cdot (b-a)^{\frac 1n}\geq\left(\int_a^b|f(x)|^ndx\right)^{\frac 1n}\geq \left(\int_{S_{\delta}}|f(x)|^ndx\right)^{\frac 1n}\geq (M-\delta)\left(\lambda(S_{\delta})\right)^{\frac 1n}.

Since f is continuous, the measure of S_{\delta} is positive and taking the \liminf and \limsup, we can see that
M\geq \limsup_n \left(\int_a^b|f(x)|^ndx\right)^{\frac 1n}\geq M-\delta\quad \mbox{and }\quad M\geq \liminf_n\left(\int_a^b|f(x)|^ndx\right)^{\frac 1n}\geq M-\delta
for all \delta>0, so \lim_{n\to\infty}\left(\int_a^b|f(x)|^ndx\right)^{\frac 1n}=M.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...