Tuesday, 15 October 2013

real analysis - $J[y]=int_a^bF(x,y,y')dx$ with constraint and free boundary

Suppose the variation problem
$$J[y]=\int_a^bF(x,y,y')dx$$
with free boundary and constraint $\int_a^bG(x,y,y')=l$, how can formulate the corresponding Euler-Lagrange equation?







For fixed boundary i.e. $f(a)=A, f(b)=B$, the Euler-Lagrange equation is
$$F_y-\frac{d}{dx}F_{y'}+(G_y-\frac{d}{dx}G_{y'})=0$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...