By integrating f(z)=e−z2 around the boundary of a rectangle with corners a,a+ib,−a+ib and −a, where b>0, show
∫∞−∞e−x2cos2bx dx=e−b2∫∞−∞e−x2 dx.
This is my attempt:
First I'll parametrize the boundaries.
γ1(t)=t for −a≤t≤a,
γ2(t)=a+it for 0≤t≤b,
γ3(t)=t+ib for −a≤t≤a,
γ4(t)=−a+it for 0≤t≤b.
Noting that the closed contour integral evaluates to zero by Cauchy-Goursat's Theorem, I split up the integral in four parts.
∫γ1(t)f(z) dz=∫a−ae−t2 dt∫γ2(t)f(z) dz=i∫b0e−(a+it)2 dt∫γ3(t)f(z) dz=−∫a−ae−(t+ib)2 dt∫γ4(t)f(z) dz=−i∫b0e−(−a+it)2 dt.
Adding, we have
∫a−ae−t2 dt+i∫b0e−(a+it)2 dt−∫a−ae−(t+ib)2 dt−i∫b0e−(−a+it)2 dt=0
Since each integrand is real, then each integral evaluates to a real number. Since the integral equals to zero, then this is only true when
∫a−ae−t2 dt−∫a−ae−(t+ib)2 dt=0
and
i∫b0e−(a+it)2 dt−i∫b0e−(−a+it)2 dt=0
I'm stuck here now. When I try to use the first equality,
∫a−ae−t2−e−(t+ib)2 dt=0
I feel like this should only hold when the integrand is identically zero...
Answer
The integrands are not real, they contain i in the exponent! Expanding the squares gives:
0=∫[−a,a]e−t2dt−∫[−a,a]e−(t2+2itb−b2)dt+i(∫[0,b]e−(a2+2ait−t2)dt+∫[0,b]e−(a2−2ait−t2)dt)=∫[−a,a](e−t2−e−t2−b2e2itb)dt+i(∫[0,b]et2−a2(e−2ait−e2ait)⏟−12isin(2at)dt)=∫[−a,a](e−t2−e−t2−b2e2itb)dt−2∫[0,b]et2−a2sin(2at)dt
Thus:
∫[−a,a](e−t2−e−t2−b2e2itb)dt=2∫[0,b]et2−a2sin(2at)dt
Now notice that the RHS integrand is real so both the integrals are real. Taking the real part of both sides gives:
∫[−a,a](e−t2−e−t2−b2cos(2bt))dt=2∫[0,b]et2−a2sin(2at)dt
Now let a→∞ and notice that the left integral goes to 0:
lim
So we have:
0 = \int_{\mathbb{R}} e^{-t^2}-e^{-t^2-b^2}\cos(2bt)\,dt = \int_{\mathbb{R}} e^{-t^2}\,dt - e^{-b^2}\int_{\mathbb{R}} e^{-t^2}\cos(2bt)\,dt
Thus:
\int_{\mathbb{R}} e^{-t^2}\cos(2bt)\,dt = e^{-b^2}\int_{\mathbb{R}} e^{-t^2}\,dt
No comments:
Post a Comment