Tuesday, 15 October 2013

complex analysis - Using contour integrals to show this relationship



By integrating f(z)=ez2 around the boundary of a rectangle with corners a,a+ib,a+ib and a, where b>0, show



ex2cos2bx dx=eb2ex2 dx.
This is my attempt:



First I'll parametrize the boundaries.
γ1(t)=t for ata,
γ2(t)=a+it for 0tb,
γ3(t)=t+ib for ata,
γ4(t)=a+it for 0tb.




Noting that the closed contour integral evaluates to zero by Cauchy-Goursat's Theorem, I split up the integral in four parts.
γ1(t)f(z) dz=aaet2 dtγ2(t)f(z) dz=ib0e(a+it)2 dtγ3(t)f(z) dz=aae(t+ib)2 dtγ4(t)f(z) dz=ib0e(a+it)2 dt.
Adding, we have
aaet2 dt+ib0e(a+it)2 dtaae(t+ib)2 dtib0e(a+it)2 dt=0



Since each integrand is real, then each integral evaluates to a real number. Since the integral equals to zero, then this is only true when
aaet2 dtaae(t+ib)2 dt=0
and
ib0e(a+it)2 dtib0e(a+it)2 dt=0
I'm stuck here now. When I try to use the first equality,
aaet2e(t+ib)2 dt=0
I feel like this should only hold when the integrand is identically zero...


Answer



The integrands are not real, they contain i in the exponent! Expanding the squares gives:
0=[a,a]et2dt[a,a]e(t2+2itbb2)dt+i([0,b]e(a2+2aitt2)dt+[0,b]e(a22aitt2)dt)=[a,a](et2et2b2e2itb)dt+i([0,b]et2a2(e2aite2ait)12isin(2at)dt)=[a,a](et2et2b2e2itb)dt2[0,b]et2a2sin(2at)dt
Thus:
[a,a](et2et2b2e2itb)dt=2[0,b]et2a2sin(2at)dt



Now notice that the RHS integrand is real so both the integrals are real. Taking the real part of both sides gives:



[a,a](et2et2b2cos(2bt))dt=2[0,b]et2a2sin(2at)dt




Now let a and notice that the left integral goes to 0:



lim



So we have:



0 = \int_{\mathbb{R}} e^{-t^2}-e^{-t^2-b^2}\cos(2bt)\,dt = \int_{\mathbb{R}} e^{-t^2}\,dt - e^{-b^2}\int_{\mathbb{R}} e^{-t^2}\cos(2bt)\,dt



Thus:




\int_{\mathbb{R}} e^{-t^2}\cos(2bt)\,dt = e^{-b^2}\int_{\mathbb{R}} e^{-t^2}\,dt


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...