$$\arctan(z)=\frac1{2i}\log\left(\frac{1+iz}{1-iz}\right)$$
i have tried but my answer doesn't matches to the equation .the componendo dividendo property might have been used. where
$$\arcsin(x)=\frac1i\log\left(iz+\sqrt{1-z^2}\right)$$
$$\arctan(z)=\frac1{2i}\log\left(\frac{1+iz}{1-iz}\right)$$
i have tried but my answer doesn't matches to the equation .the componendo dividendo property might have been used. where
$$\arcsin(x)=\frac1i\log\left(iz+\sqrt{1-z^2}\right)$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment