Intuitively it seems that both concepts should be disjoint because if a function is discrete then it has some holes on it and if a function is continuous then it doesn't have holes. But now I'm not sure because, from my understanding, a function may be continuous at $x_{0}$ if $x_{0}$ is an accumulation point in its domain such that $\lim_{x\to x_0}f=f(x_{0})$. So for example the function $f:\mathbb{Q}\to \mathbb{R}$ such that $f(x)=x$ is such that $\lim _{x\to x_0}f=x_{0}=f(x_{0})$ and then $f$ is continuous at any point in its domain but also it's discrete. What I'm a missing?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment