I am trying to solve this limit:
$$\lim_{x\to\infty} \frac{2^x}{x^{200}}$$
The first result is an indetermination of the kind $\frac{\infty}{\infty}$ but here applying L'Hopital would be too long, I do not see any substitution by means of equivalent infinitesimals possible and simplifying the limit neither.
How can I solve it? The solution must be $\infty$. Thank you!
Answer
L'Hopital rule applied $200$ times leads to
$$\lim_{x\to\infty}\frac{(\log 2)^{200} \,2^x}{200!}=\infty$$
Or you can take the logarithm of the limit
$$\log\lim_{x\to\infty}\frac{2^x}{x^{200}}=\lim_{x\to\infty}\left(x\log 2-200\log x\right)=\lim_{x\to\infty}x\left(\log 2-200\frac{\log x}{x}\right)=\infty$$
As the log of the limit is $+\infty$ the limit is $+\infty$
No comments:
Post a Comment