Monday, 4 November 2013

calculus - Integrating a composition

I'm need to calculate this:



$$\int g'(x) (2g(x) - \frac{1}{g^2(x)}) dx $$



I think i have to integrate by parts, so i put:



$$ dv= g'(x) dx,v=g(x)$$
$$u=2g(x) - g(x)^{-2},du=2g'(x)-(g(x)^{-2})'$$




then i apply:
$$uv-\int vdu $$
and i should integrate:
$$\int g(x)( 2g'(x)-g'(x)^{-2} $$



I'm not sure this is the right way, i think there is an easier way but how?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...