Saturday, 2 November 2013

calculus - $lim_{xrightarrow 0^+} frac {ln(x)}{ln( sin x)}$ without l'Hôpital's rule

How to calculate $\displaystyle
\lim_{x\rightarrow 0^{+}}\frac{\ln x}{\ln (\sin x)}$ without l'Hôpital's rule please?
If anybody knows please help
I don´t have any idea :-(
I´m looking forward your helps

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...