Friday, 8 November 2013

functions - Prove $f(S cup T) = f(S) cup f(T)$



$f(S \cup T) = f(S) \cup f(T)$




$f(S)$ encompasses all $x$ that is in $S$
$f(T)$ encompasses all $x$ that is in $T$



Thus the domain being the same, both the LHS and RHS map to the same $y$, since the function $f$ is the same for both.



Can you post the solution?


Answer



$$y\in f(S\cup T)\Longrightarrow \exists\,x\in S\cup T\,\,s.t.\,\,f(x)=y$$




and now:



$$x\in S\Longrightarrow\,y=f(x)\in f(S)\;\;;\;\;x\in T\Longrightarrow\,y=f(x)\in T$$



so that anyway $\,y=f(x)\in f(S)\cup f(T)\,\Longrightarrow f(S\cup T)\subset f(S)\cup f(T)$



Now you try to do the other way around: $\,f(S)\cup f(T)\subset f(S\cup T)$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...